
The Border K-Means Clustering Algorithm for One Dimensional Data

Ryan Froese
Dept. of Computer Science

University of Manitoba
Winnipeg, MB, Canada

froeser5@myumanitoba.ca

James Klassen
Dept. of Computer Science

University of Manitoba
Winnipeg, MB, Canada

klass167@myumanitoba.ca

Tyler Loewen
Dept. of Computer Science

University of Manitoba
Winnipeg, MB, Canada

loewent4@myumanitoba.ca

Abstract—Clustering is a widely used technique for data
pre-processing, mining, and analysis. The k-means clustering
algorithm is commonly used because of its simplicity and
flexibility to work in many data mining domains. Despite
being commonly used, the k-means algorithm suffers from non-
deterministic results and run times that vary greatly depending
on the initial selection of cluster centroids. There have been
many proposed improvements to the k-means algorithm. We
propose the border k-means clustering algorithm which com-
bines concepts from the k-means algorithm with an additional
focus on the concepts of the borders dividing clusters. What
we find is deterministic results with greatly improved run time
over the k-means algorithm.

Index Terms—Clustering algorithms, Cluster analysis, k-means
algorithm, Data analysis

1 Introduction

Clustering is a data mining technique used to arrange
large amounts of data into distinct clusters. It is used in
many fields including image processing, pattern recognition,
bioinformatics, spatial data analysis, and more. The idea of
a clustering algorithm is to create clusters containing data
points from a dataset where every data point in the same
cluster is more similar to one another than to the data points
in other clusters (i.e., maximizing the intra-class similarities
within a cluster and minimizing inter-class similarities be-
tween other clusters). Thus, creating a set of data points
in a cluster that are locally more similar to each other
than to data points in other clusters. Clustering can help
researchers better understand the distribution and structure
of large datasets. In Section 2 we introduce the partitioning
approach to clustering and describe the k-means clustering
algorithm along with some of its shortcomings. We then
discuss some commonly used approaches to improving the
k-means algorithm. In Section 3 we propose our improved k-
means algorithm. We include pseudo code for our algorithm,
a formal proof of correctness, and the time complexity of a
single iteration. In Section 4 we analyze the experimental re-
sults of our algorithm and compare both artificial datasets of
different sizes and distributions, and a real-world dataset. In
Section 5 we use a real-world dataset containing oceanic and

atmospheric data combined with our clustering algorithm to
visualize geospatial data. We also discuss any new findings
and relationships that become apparent when visualizing the
data. Lastly, Section 6 provides a summary of our findings,
visualizations of our dataset and potential improvements to
our algorithm in the future.

2 Background

2.1 Clustering

There are three major techniques for clustering: parti-
tioning methods, hierarchical methods, and density-based
methods. The partitioning method is used by the original k-
means algorithm and our algorithm. The partitioning method
takes a dataset of size n and partitions it into some k number
of partitions (clusters) where k ≤ n. Each cluster contains
at least one data point, and each data point belongs to
exactly one cluster (i.e., distinct clusters). The similarities
between items in each cluster are then evaluated using a
distance function through an iterative process until all data
points are in their current cluster. The centre of a cluster
can be calculated using the centroid or medoid methods.
The centroid of a cluster is determined by calculating the
average of every data point in the cluster while the medoid
of a cluster is determined by calculating the median data
point of the cluster.

2.2 k-means Clustering Algorithm

The k-means algorithm is a widely used clustering al-
gorithm that is easy to understand and implement and can
be used across a large variety of problems [1]–[5]. We
have included the pseudo code of the k-means algorithm as
Algorithm 1 for reference. There are two phases in the k-
means algorithm. During the initial phase, k random values
are chosen from the dataset and assigned as the initial
centroids of each of the clusters where k is the number
of clusters [1]. In the second phase, the distance from each
data point in a cluster to the centroid of every other cluster
is calculated. If a data point is closer to a different cluster
than the one it currently belongs to, the data point is moved

to the closest cluster. After one iteration is complete and
all data points have been moved, the centroids for each
cluster are recomputed. This process continues until none
of the data points move to a different cluster which occurs
when the centroids of each cluster do not change. One of the
issues with the k-means algorithm is the random selection
of initial cluster centroids. This random selection has two
main effects on the behaviour of the algorithm. First, it
makes the algorithm non-deterministic in the final clusters it
produces [1]. This means the number of data points in each
cluster can vary greatly depending on the initial centroids
chosen. Second, for large datasets, some random selections
of initial centroids can greatly reduce the performance of
the algorithm as more iterations are required to move data
points between clusters [1], [2].

Algorithm 1: k-means clustering algorithm
Input:

• D = {d1, d2, . . . , dn}: Set of n data points in any
order

• k: Number of clusters

Output:

• A set of k clusters

Steps:

1) Randomly select k data points from D as initial
centroids

Repeat until values of centroids do not change:

2) Assign each data point di to the cluster with the
closest centroid

3) Calculate the new centroid of each cluster

2.3 Related Work

There have been many improvements to the k-means
clustering algorithm [1]–[3]. The global k-means clustering
algorithm modifies the k-means algorithm by minimizing
the distance between data points within the same cluster
using the k-means algorithm as a local search procedure [2].
In this algorithm, the local k-means algorithm starts with
a single cluster and calculates the centroid of this cluster.
The global k-means algorithm then applies the k-means
algorithm sequentially on an increasingly large number of
clusters to solve a local problem [2]. At the start of each
local search, the cluster centroids are initially placed at the
currently most optimal position, which is determined by the
centroids calculated in the previous iteration’s local search
[2]. This improves performance by reducing the number
of data points that have to be moved between clusters.
The global k-means algorithm produces deterministic results
because it starts with a single cluster and computed centroid.
It also has improved performance over the k-means algo-
rithm because it always passes the most recently calculated

centroid(s) of the current iteration to the next iteration,
reducing the number of data points that are moved between
clusters [2].

The improved k-means algorithm proposed by K. Nazeer
and M. P. Sebastian [1] modifies the original k-means al-
gorithm using a technique to systematically determine the
initial centroids of each cluster with better accuracy than
when selecting them randomly [1]. The clustering process is
then applied to the initial clusters using a heuristic approach
for improved efficiency [1]. In this heuristic approach, the
distances from each data point in a cluster to their nearest
cluster are saved and passed to the next iteration. In the
next iteration the distances from the previous iteration are
compared to the new distances from each data point in the
cluster to the cluster they are closest to. If the distance
calculated in the current iteration is less than or equal to the
distance calculated in the previous iteration then the data
point stays in its current cluster. Otherwise, the distance
from the data point to every other cluster is calculated to
find the new closest cluster to the data point.

3 Modified Approach

3.1 The border k-means clustering algorithm

In this paper, we propose the border k-means clustering
algorithm, a modified version of the original k-means al-
gorithm optimized for single-dimensional data. The border
k-means algorithm has two phases. In the first phase, we use
Algorithm 2 to determine the initial cluster centroids which
are used in Algorithm 3. To get the initial cluster centroids,
Algorithm 2 sorts the data points in ascending order in Step
1 and assigns a centroid value to each k clusters by choosing
k data points evenly distributed across the dataset in Step 2.
In Step 3, we iterate over each data point exactly once and
assign it to the cluster it is closest to. The initial centroids
are recalculated in Step 4 to account for data points that have
changed clusters in Step 3. Lastly, Step 5 returns the list of
initial centroids, a list of the sum of data point values in
each cluster, and the number of data points in each cluster.

In the second phase, we use Algorithm 3 which takes the
output of Algorithm 2 and determines the final clusters. Step
1 calculates the positions of the cluster borders by using the
number of data points in each cluster as seen in Eq.(1). Once
the cluster borders are calculated we calculate the initial
average of the cluster border in Step 2 using the centroids of
the two clusters neighbouring the cluster border. Step 3 is an
iterative looping process that moves the cluster borders one
position at a time until they are in the correct position. Step 3
is executed on each cluster border sequentially, only moving
the next cluster border when the current cluster border is in
the correct position. There are three cases to consider in
Step 3. In case 3a, the cluster border continues to move one
position to the left as long as the data point to the left of
the cluster border is greater or equal to the cluster border
average. In case 3b the cluster border continues to move
one position to the right as long as the data point to the

Algorithm 2: Finding initial centroids
Input:

• D = {d1, d2, . . . , dn}: Set of n data points in any
order

• k: Number of clusters

Output:

• C = {c1, c2, . . . , ck}: Set of initial cluster centroids
in ascending order

• S = {s1, s2, . . . , sk}: The sum of data point values
in each cluster

• N = {n1, n2, . . . , nk}: The number of data points
in each cluster

Steps:

1) Sort D in ascending order
2) Define C as a linear interpolation with k data

points beginning with d1 and ending with dk
3) For each data point di:

• Determine the cluster centroid closest to di
• Add the value of di to the appropriate

element in S
• Increment the count of the appropriate

element in N

4) Re-calculate each centroid ci ∈ C as si
ni

right of the cluster border is less than the cluster border
average. In both case 3a and case 3b, the cluster border
will no longer be moved when case 3c is true. In case 3c
the cluster border is in the correct position because the data
point directly to the left of the cluster border is less than
the cluster border average and the data point immediately
to the right of the cluster border is greater or equal to the
cluster border average. When this is the case, the algorithm
continues to the next cluster border. When case 3c is true for
every cluster border, then all data points are in the correct
clusters; this is the terminating condition of Algorithm 3.
When Step 3 has terminated, any clusters containing no data
points are removed in Step 4. Then in Step 5, the centroid
of each cluster is updated using the cluster sums and cluster
counts lists. Since each cluster sum and count is updating
continuously in Step 3, calculating the centroids in Step 5 is
trivial and does not require iterating over every data point.
Finally, Step 6 outputs the list of centroids, sums of each
cluster, and the number of items in each cluster.

Algorithm 4 is the complete algorithm that combines
Algorithm 2 and Algorithm 3. As input, Algorithm 4 takes
an unsorted dataset and some number of clusters k and
outputs a list of cluster centroids. In phase 1, we use
Algorithm 2 to determine the initial cluster centroids as well
as the sum and number of data points in each cluster. These
outputs are then used in phase 2 where Algorithm 3 performs
the full clustering which produces a list of cluster centroids.

Algorithm 3: The border k-means clustering algo-
rithm

Input:
• D = {d1, d1, . . . , dn}: Set of n data points in

ascending order
• k: Number of clusters
• C = {c1, c2, . . . , ck}: Initial set of cluster centroids

in ascending order
• S = {s1, s2, . . . , sk}: The sum of data points

values in each cluster
• N = {n1, n2, . . . , nk}: The number of data points

in each cluster

Output:

• C = {c1, c2, . . . , ck}: Updated centroids for each
cluster

• S = {s1, s2, . . . , sk}: Updated sums of data points
values in each cluster

• N = {n1, n2, . . . , nk}: Updated numbers of data
points in each cluster

Steps:

1) Determine the indexes that divide each cluster
using N .

2) Compute the cluster border averages by taking the
average of the cluster centroids adjacent to each
cluster border.

3) Repeat for each cluster border bi:

a) If the data point immediately before bi is
greater than or equal to the corresponding
adjacent cluster border average, move bi
to the left until this is no longer the case.
Update the appropriate elements in S and
C for each cluster.

b) If the data point immediately after bi is
less than the corresponding adjacent
cluster border average, move bi to the
right until this is no longer the case.
Update the appropriate elements in S and
C for each cluster.

c) If the data point immediately before bi is
less than the corresponding adjacent
cluster border average, and the data point
immediately after the cluster border is
greater than or equal to the corresponding
adjacent cluster border average, bi is in
the correct position.

4) Delete any empty clusters.
5) Update each ci ∈ C as si

ni
.

Algorithm 4: Full clustering algorithm
Input:

• D = {d1, d1, . . . , dn}: Set of n data points in any
order

• k: Number of clusters
• C = {c1, c2, . . . , ck}: List of cluster centroids

Output:

• C = {c1, c2, . . . , ck}: List of cluster centroids

Steps:

1) Use Algorithm 2 to determine the initial cluster
centroids, cluster sums, and cluster data point
counts

2) Use output from Algorithm 2 as input to
Algorithm 3 to determine C

3.2 Proof of Correctness

In this section we prove the following two properties
of the border k-means algorithm to show that the algorithm
always produces the correct results:

Property 1. Each data point in the dataset will be assigned
to the cluster it is closest to

Property 2. The cluster borders cannot cross each other
as this would cause the sum and count calculations to be
incorrect.

For the algorithm to work correctly we assume that there
are no duplicate centroids. When a data point has an equal
distance to two different centroids we assign the data point
to the cluster with the larger of the two centroids. This
behaviour is omitted from the proof because the probability
of two distances being equal considering floating-point pre-
cision is very low. We also assume that there are at least two
clusters, that is k ≥ 2. For future reference in this proof,
cluster borders are positions that separate the data points
into clusters by defining where clusters begin and end in
the dataset.

3.2.1 Setup
Algorithm inputs:

• D = {d11, d12, . . . , d1n1 , . . . , dknk
}: Dataset with

elements dij where i is the cluster and j is the index
within the cluster

• k: Number of clusters where k ≥ 2
• C = {c1, . . . , ck}: Set containing the centroids of

each cluster where each c is unique and c1 < c2 <
· · · < ck

• S = {s1, . . . , sk}: Set containing the sums of data
points in each cluster

• N = {n1, . . . , nk}: Set containing the number of
data points in each cluster

To better visualize the intuition of the algorithm, we
model the data and associated clusters as a sorted list of

data points in clusters separated by cluster borders, i.e. the
first border separates clusters 1 and 2, etc.. The set of all
cluster borders positions is defined asB = {b1, . . . , bk−1}.
The algorithm inputs and borders can be visually represented
by Eq.(1).

D = d11, d12, . . . , d1x1︸ ︷︷ ︸
s1=d11+···+d1x1

c1=
s1
x1

b1=
x1︷︸︸︷
| d21, d22, . . . , d2x2︸ ︷︷ ︸

s2=d21+···+d2x2

c2=
s2
x2

b2=
x1+x2︷︸︸︷
| . . .

bk−1=
x1+x2+···+xk−1︷︸︸︷

| dk1, dk2, . . . , dkxk︸ ︷︷ ︸
sk=dk1+···+dkxk

ck=
sk
xk

(1)

3.2.2 Outline of Proof of Property 1
Property 1.1: Data points can only be closest to one

of the clusters they are adjacent to or belong to, i.e. dij is
closest to either ci−1, ci or ci+1.

Definition 1.2: A cluster border bi is in the correct
position if all data points before bi are closer to ci than
ci+1, and all data points after bi are closer to ci+1 than ci.

Property 1.3: An equivalent statement to Definition 1.2:
If a cluster border bi is in the correct position, the item x
immediately before bi satisfies x < (ci + ci+1)/2, and the
item y immediately after bi satisfies y ≥ (ci + ci+1)/2.

Property 1.4: Once the first i cluster borders have been
put in the correct position, it follows that all data points
before bi have been assigned to the correct cluster.

Property 1.5: Once the last cluster border bk−1 has been
put in the correct position, all data points after bk−1 have
been correctly assigned to the last cluster.

Conclusion: By Property 1.4 and Property 1.5, once the
algorithm terminates, all data points have been assigned to
the correct cluster.

3.2.3 Proof of Property 1
Recall that:

1) c1 < c2 < · · · < ck
2) d11 ≤ d12 ≤ · · · ≤ d1n1

≤ · · · ≤ dk1 ≤ · · · ≤ dknk

3) Due to the properties of means, we know that for
any cluster i, di1 ≤ ci ≤ dini

Property 1.1: We now prove that data points can only
be closest to one of the clusters they are adjacent to or
belong to, i.e. dij is closest to either ci−1, ci, or ci+1.
Given a data point dij in a cluster i where j is the index
of the data point inside the cluster, we consider which
cluster centroids dij could be closest to. Let i = 1, then
it follows that d1j is either closest to c1 or c2 since c3 > c2.
Intuitively, it would not be the case that d1j is closer to c3
than c2 (or any centroid higher larger than c3). Stating this
more formally, we want to minimize the L2 Norm in one
dimension |d1i − ca| over the variable a. By the algebraic

definition of absolute values, |d1i − c3| = c3 − d1i because
c3 > d1i and |d1i − c2| = c2 − d1i because c2 ≥ d1i. Then
it follows that |d1i − c3| > |d1i − c2| ⇐⇒ c3 − d1i >
c2 − d1i ⇐⇒ c3 > c2 which is the first property we
recalled above. This property can be generalized to any
cluster, therefore proving Property 1.1.

Definition 1.2: For a cluster border bi to be in the correct
position, all data points to the left of bi are closer to ci than
ci+1, and all data points to the right of bi are closer to ci+1

than ci.
Property 1.3: For convenience, define mi = (ci +

ci+1)/2 as the mean of two adjacent cluster centroids.
Lemma: If an arbitrary data point dij is less than mi, then
it is closer to ci than ci+1 and if an arbitrary data point dij
is greater than mi, then it is closer to ci+1 than ci.

• If dij ≤ ci (and hence automatically closer to ci
than ci+1) then dij < mi since mi > ci

• If dij > ci then |dij − ci| = dij − ci and
|dij − ci+1| = ci+1 − dij (since dij < ci+1 must
be true), after which it follows that (dij − ci) <
(ci+1 − dij) ⇐⇒ 2dij < ci + ci+1 ⇐⇒ dij <
(ci + ci+1)/2 ⇐⇒ dij < mi. Conversely, this
also applies to (dij − ci) > (ci+1 − dij) where
(dij−ci) > (ci+1−dij) ⇐⇒ 2dij > ci+ci+1 ⇐⇒
dij > (ci + ci+1)/2 ⇐⇒ dij > mi.

This extends without loss of generality to an arbitrary
data point d(i+1)j in cluster i+ 1. Then by the lemma, the
condition for a cluster border being in the correct position is
when the data point x immediately before the cluster border
satisfies x < mi, and the data point y immediately after
the cluster border satisfies y > mi. This ensures that both
data points have the shortest distance to the centroid of the
cluster they belong to. Then by the transitive property, all
data points before x are also closer to ci than ci+1, and all
data points after y are closer to ci+1 than ci.

Property 1.4: We now prove that once the first i cluster
borders have been put in the correct position, it follows that
all data points before bi have been assigned to the correct
cluster. Our algorithm starts with the first cluster border at
position b1, moving it left or right until it is in the correct
position as defined by Property 1.3. Since every data point
before b1 is closer to c1 than c2, and each data point must
be closest to either c1 or c2, we conclude that each data
point before b1 has been assigned to the correct cluster c1.
We then move on to the second cluster border b2, moving
it left or right until it is in the correct position. The same
argument as before applies; since every data point between
b1 and b2 is closer to c2 than c1 or c3, and since every data
point between b1 and b2 must be closest to either c1, c2 or
c3, every data point between b1 and b2 must be assigned
to the correct cluster. We can continue this process for i
cluster borders, resulting in every data point before bi being
assigned to the correct cluster.

Property 1.5: We now prove that once the last cluster
border bk−1 has been moved into the correct position, all
data points after bk−1 have been assigned to the correct
cluster. Following from Property 1.1 and Definition 1.2, all

data points after bk−1 must be closer to ck than ck−1, and
all data points after bk−1 must be closest to either ck or
ck−1. Therefore, once the last cluster border bk−1 has been
moved into the correct position, all data points after bk−1

have been assigned to the correct cluster.
Conclusion: Therefore, by Property 1.4 and Property

1.5, once the algorithm terminates, all data points have been
assigned to the correct cluster.

3.2.4 Outline of Proof of Property 2
Property 2.1: As a cluster border is being adjusted, it

cannot cross an unadjusted border to its left or right.
Property 2.2: As a cluster border is being adjusted, it

cannot cross an already-adjusted border to its left or right.
Conclusion: By Property 2.1 and Property 2.2, cluster

borders cannot cross each other, even if the border k-means
algorithm is executed in parallel.

3.2.5 Proof of Property 2
Property 2.1: Let bi be an unadjusted cluster border with

neighbouring unadjusted cluster borders bi−1 and bi+1. If bi
is moved to the left to get to its correct position, it cannot
cross to the left of di1 (the data point just to the right of
bi−1), since di1 ≤ ci < ci+1. This means that di1 is closer
to ci than ci+1. However, if bi crossed to the left of di1, it
is implied that di1 is closer to ci+1 than ci. This also means
that bi can move at most ni − 1 data points to the left.

If bi is instead moved to the right to get to its correct
position, it cannot cross to the right of d(i+1)(ni+1) (the data
point just to the left of bi+1). This is because d(i+1)(ni+1) ≥
ci+1 > ci, meaning that d(i+1)(ni+1) is closer to ci+1 than
ci. However, if bi crossed to the right of d(i+1)(ni+1) it is
implied that d(i+1)(ni+1) is closer to ci than ci+1. This also
means that bi can move at most ni+1− 1 data points to the
right. Combining the fact that bi can move at most ni − 1
data points the left, or move at most ni+1−1 data points to
the right, the absolute maximum a cluster border can move
in one iteration is max(ni − 1, ni+1 − 1).

Property 2.2: Let bi be an unadjusted cluster border
with neighbouring adjusted cluster borders bi−1 and bi+1.
If bi is moved to the left to get to its correct position, it
cannot cross to the left of bi−1, as that would imply that
a data point left of bi−1 was closer to ci+1 than ci−1. We
know this is not the case because the data point is closest to
ci−1. If bi is instead moved to the right to get to its correct
position, it cannot cross to the right of bi+1, as that would
imply that a data point to the right of bi+1 was closer to
ci−1 than ci+1. We know this is not the case because the
data point is closest to ci+1.

Conclusion: By Property 2.1 and Property 2.2, cluster
borders cannot cross each other. This proves that if one were
to parallelize the border k-means algorithm by dividing the
work into k − 1 chunks, where each process works on one
chunk adjusting a single cluster border, the cluster borders
cannot cross each other.

3.3 Empirical Runtime Analysis

In this section, we compare the runtime of our border
k-means algorithm (Algorithm 4) with the original k-means
clustering algorithm (Algorithm 1). Since Algorithm 4 pro-
duces identical clustering results as Algorithm 1, it logically
follows that Algorithm 4 will take the exact same number
of iterations to converge to its final result. The number of
iterations in the k-means algorithm is known to scale with
the size of the dataset [7] but is still an area of active
research and is highly variable depending on the initial
conditions. Therefore, our analysis will not be based on the
number of iterations our algorithm performs. We will also
not be formally proving any of the time complexities related
to the runtime of our algorithm as the proofs would likely
be non-trivial and out of the scope of this paper.

We begin by determining the number of operations done
per iteration in Algorithm 3. For each cluster border, we
check if it needs to be moved and then move it into the
correct position if necessary. Let x be the total number of
positions the cluster borders move plus k − 1 (to account
for checking if each cluster border needs to be moved), then
the total number of operations done for a single iteration is
O(x).

Next, we observe that x < n where n is the size of the
dataset. First, note that the maximum number of positions a
cluster border bi can move is max(ni− 1, ni+1− 1) as was
shown in the proof of Property 2. Assume the worst-case
scenario: that every cluster border except the last border
moves as far to the left as possible, and the last cluster
border moves either left or right. Then b1 will move n1− 1
positions to the left, b2 will move n2−1 positions to the left,
etc... and the last border will move max(nk−1 − 1, nk − 1)
positions, either to the left or right depending on which
centroid is larger. So we have x = (n1 − 1) + (n2 − 1) +
· · · + (nk−2 − 1) + max(nk−1 − 1, nk − 1) + (k − 1) =
n1 +n2 + · · ·+nk−2 +max(nk−1− 1, nk − 1)+ 1 ≤ n1 +
n2+· · ·+nk−2+max(nk−1, nk) < n1+n2+· · ·+nk−1+nk,
thus proving the property that x < n. As we noted in the
proof of correctness, there are at most three possibilities for
which centroid a given data point is closest to. This implies
a different optimized k-means algorithm in which you only
check the nearest two or three centroids instead of checking
all k centroids as the k-means algorithm does. The fact that
x < n, proves that our algorithm is faster than this optimized
version of the k-means algorithm.

For the second phase of Algorithm 4 (clustering phase),
the total number of operations performed is proportional
to the sum of x values over all iterations where x is the
number of positions cluster borders have moved plus k −
1, which we denote xsum. This makes the total number of
operations during phase two O(xsum). Figure 1 is a plot of
how xsum scales with the size of the dataset for a variety
of different dataset distributions. For Figure 1 and Figure
2 we used three synthetic datasets: A uniform distribution,
a normal distribution, and a distribution with four normal
distributions overlapped, with means of 200, 800, 1200, and

Figure 1. Number of operations.

Figure 2. Ratio of operations over dataset size.

1500, each with a standard deviation of 150. The data points
were evenly split amongst the four normal distributions.

We can make two observations from Figure 1. First,
xsum scales roughly linearly with the size of the dataset.
Second, the slope of the ratio between x and the size of
the dataset changes depending on the distribution of the
dataset. This slope is a big-oh constant scaling factor that
could potentially be ignored, however in Figure 2, we show
the ratio of the number of operations over the dataset size
(xsum/n) which appears to approximate a logarithm on the
size of the dataset.

We can conclude that phase 2 of Algorithm 4, including
all iterations, takes either O(n) if xsum/n converges towards

a constant value or O(n log n) if xsum/n follows log n time.
However, since phase 1 of Algorithm 4 sorts the input
dataset using a comparison-based sort, the time complexity
of Algorithm 4 is O(n log n) regardless of whether phase
2 is O(n) or O(n log n). This is in stark contrast to other
optimized k-means algorithms which have a time complexity
of O(n2) [1].

Additionally, as with Algorithm 1, Algorithm 3 is par-
allelizable. As noted in the proof of correctness, the cluster
dividers cannot cross each other and cause the sum and
count calculations to be incorrect, even when the algo-
rithm is executed in parallel. As such, parallelizing the
algorithm is possible. If both the sorting and the cluster-
ing steps were parallelized, the total runtime for Algo-
rithm 4 would be either O((log n)2 + n

k−1) = O(nk) or
O((log n)2 + n

k−1 log n) = O(nk log n), depending on the
true complexity of phase 2 [6].

To summarize our results, Algorithm 4 has a time com-
plexity of O(n log n) when executed sequentially and a time
complexity of at most O(nk log n) when executed in parallel.

4 Visualization

4.1 Dataset

So far we have applied our border k-means algorithm to
various artificial datasets but we now apply it to a real-world
dataset containing oceanographic hydrological and marine
meteorological data [4]. We then visualize the results in
two different formats to make the data easier to interpret.
Ocean and atmosphere data requires data preprocessing,
conversion, and manipulation to properly understand it due
to its vast, complex, and high volume nature [4]. We use the
ERA5 global climate and weather dataset which contains
hourly data on single levels from 1979 to present. ERA5
uses reanalysis and data assimilation techniques which com-
bine the use of model data and observations to create a
complete dataset with pre-interpolated data points aligned
with a regular latitude/longitude grid in 0.25º intervals.
For our visualizations, our dataset contains the sea surface
temperature, mean sea level pressure (globally), atmospheric
temperature two metres above the surface of the earth, and
land-sea mask data at hour 00 for every day in the year 2019.
This results in 1,440 data points across the longitudinal
range of [0,360] and 720 data points across the latitudinal
range of [0,180] for a total of 1,036,800 data points per
variable per day. This totals 378,432,000 data points for the
entire year per variable or 1,513,728,000 when considering
all variables. With four variables, the number of data points
in the dataset is incredibly large and therefore difficult to
process. We perform the data pre-processing in parallel to
greatly reduce the execution time required to process the
data.

4.2 Data Pre-processing

We perform three data pre-processing algorithms to the
original dataset. First, to increase the speed of our border

k-means algorithm without significant loss of data precision,
we take the original dataset and significantly reduce its size.
This is done by iterating through every data point located at
an integer latitude/longitude coordinate and calculating an
averaged data point using the grid of data points located
four data points above and to the right of the averaged
data point. Running this averaging algorithm on each of
the variables from the original dataset excluding the sea-
land mask variable reduces a variable’s size from 1,036,800
to 64,800 data points per day without losing significant
amounts of precision. This leads to a total reduction of
1,135,296,000 to 70,956,000 data points. Second, because
our two metre atmosphere temperature and mean sea level
pressure variables contain data covering the entire globe (in-
cluding land) we use the land-sea mask variable to remove
any data points that were measured above land. This helps
keep the focus of our visualization on oceanic data. Last, we
remove any averaged data points that contain one or more
masked values in their averaging calculation. We parallelize
these data pre-processing algorithms which greatly reduces
the execution time of the data pre-processing stage.

4.3 Visualizations

Figure 3. Sea Surface Temperature on March 20th 2019.

Figure 4. Two Metre Atmosphere Temperature on March 20th 2019.

We created two different types of visualizations to rep-
resent the clustered data. The first visualization plots each
cluster on an equirectangular projection of the Earth. Each
cluster is coloured based on the value of its centroid. The

Figure 5. Sea Surface Temperature on September 22nd 2019.

Figure 6. Two Metre Atmosphere Temperature on September 22nd 2019.

second visualization is a discrete stepped line graph rep-
resenting the changes in the values of the variable on the
y-axis over a single line of latitude of the earth, from the
South Pole to the North Pole. Each cluster appears as a step
in the line which is helpful for understanding which latitude
clusters of similar values are located on the earth. For each
variable, we generated a line graph and a map plot for each
day of the year. We then created an animated video for
each variable and visualization type. This provides an easy
way to visually represent any changing trends in the data
throughout the year 2019.

Using the visualizations we created, we can gather useful
information from the original dataset. When looking at
the map plots of sea surface temperature and two metre
atmosphere temperature we can see that the regions close
to the equator have a higher temperature than the regions
closer to the poles, as expected. Furthermore, we can see
the distribution of similar data points by observing the size
of each cluster. We see in Figure 4 that a large portion of
the earth around the equator has a similar air temperature of
around 25º Celsius. This is in contrast to the air temperature
in the North Pole region that is sub 20ª Celsius that covers
much less of the map. We can see from observing Figure 3
that the sea surface temperature similarly has cold regions
at both poles while the two metre air temperature in Figure
4 is only that cold at the North Pole.

Another key observation we can make is how the clusters
change over time throughout the year. When comparing

Figure 4 and Figure 6 we can see that on March 20th,
2019 in Figure 4 the regions near the North Pole are much
colder than the same region in Figure 6 on September 22nd,
2019. Similarly, in Figure 4 the temperatures directly above
Antarctica are warmer than the same region in Figure 6.
When considering the cluster with the hottest temperatures,
we see that it’s position on the map in Figure 4 moves from
just below the equator to above the equator in Figure 6. A
similar effect can also be seen in Figure 3 and Figure 5
where the warmest water is located roughly just below the
equator in Figure 3 and slightly above the equator in Figure
5.

Figure 7. Sea Surface Temperature on March 20th 2019.

Figure 8. Two Metre Atmosphere Temperature on March 20th 2019.

Figure 9. Sea Surface Temperature on September 22nd 2019.

Figure 10. Two Metre Atmosphere Temperature on September 22nd 2019.

Using our line graph visualization we can see the clus-
tering results in a completely different format. We observe
similar trends as seen in the map plots. When comparing the
sea surface temperature in Figure 7 to Figure 9 we see that
on September 22nd in Figure 9 the cluster with the coldest
temperatures around 75º S is larger than the cluster with the
coldest temperatures on March 20th in Figure 7. The oppo-
site is the case for the cluster with the coldest temperatures
around 85º N where Figure 8 has more cold data points than
the respective cluster in Figure 9. We also observe that the
size of the cluster with the warmest temperatures increases
significantly in both the sea surface temperature from Figure
7 to Figure 9 and two metre atmosphere temperature from

Figure 8 to Figure 10. Lastly, if we consider the overall
position of the curve between Figure 7 and Fib 7 and the
curve between Figure 8 and Figure 10, it is apparent that the
entire curve is shifted farther south of the equator in Figure
7 and Figure 8 and farther north above the equator in Figure
9 and Figure 10. When observing the two metre atmosphere
temperature in Figure 8 and Figure 10 we notice significant
differences in the temperatures at the south and north poles.
In Figure 8 we see that the coldest atmospheric temperature
in the South Pole region is around -13º Celsius compared
to the -20º Celsius in Figure 10. In Figure 8 we see that the
coldest atmospheric temperature in the North Pole is around
-30º Celsius compared to the 0º Celsius in Figure 10.

Our observations on the difference in temperature at
the polar regions at different times of the year, the sizes
of the clusters, and the general shape of the line graphs
can ultimately be explained by the movement of the sun.
These shifts in atmospheric and sea surface temperature
from lower latitudes to higher latitudes and vice versa are
caused by the Sun. The Earth receives the highest amount
of solar radiation at the point on the Earth’s surface where
the sun is directly overhead. This point moves north and
south throughout the year, moving between the Tropics of
Cancer at 23.4º N and the Tropics of Capricorn 23.5º S of the
equator respectively [8]. The sun is directly overhead of the
Tropics of Cancer during the vernal equinox on March 20th
and directly overhead of the Tropics of Capricorn during
the autumnal equinox on September 22nd. This explains the
shift of sea surface and two metre atmosphere temperature
between lower and higher latitudes throughout the year.
When the sun is directly overhead the Tropics of Capricorn
in the Southern Hemisphere on March 20th we see the
largest shift of overall temperatures south of the equator.
Similarly, when the sun is directly overhead of the Tropics
of Cancer in the Northern Hemisphere on September 22nd
we see the largest shift of overall temperatures north of the
equator.

As observed from the changes in cluster locations in
both sea surface temperature and two metre atmospheric
temperature map plots, we notice that the location and sizes
of the clusters shift more dramatically in the two metre at-
mosphere temperature plots than the sea surface temperature
plots. This is due to the ocean being a large body of water
that does a better job of absorbing and retaining temperature
compared to less dense air. This causes the air temperature
to increase and decrease at a faster rate from solar radiation
when compared to the ocean water temperature.

5 Conclusion

In this paper, we proposed the border k-means cluster-
ing algorithm, an improved k-means clustering algorithm
to cluster data in a single dimension. The proposed algo-
rithm provided significant performance improvements over
the well-known k-means algorithm as well as deterministic
results. We then proved the correctness of our algorithm
by showing it yields the same results as the traditional k-
means algorithm. Using artificial datasets with randomly

generated data we empirically analyzed the runtime of the
algorithm, observing a runtime of O(n log n) in the worst
case; an improvement over other improved k-means algo-
rithms with a time complexity of O(n2) [1]. We then applied
the proposed algorithm to a real-world dataset with oceanic
and atmospheric data. To better understand the results of
our algorithm and the data it produced we visualized the
clusters on a map of the Earth as well as a discrete stepped
line graph. We were able to observe trends in the size and
locations of clusters on the Earth depending on the time of
year.

A clear limitation of the proposed algorithm is that it can
only be applied to data in a single dimension. Many datasets
that benefit from clustering have a high-dimensionality. As
such, a future improvement would be to extend the concepts
used by the proposed algorithm to an algorithm that can be
applied to high-dimensional data. A potential approach for
this would be to generalize the concept of cluster borders to
two or more dimensions using Voronoi diagrams, of which
there exist efficient algorithms to compute and manipulate
[10].

Additionally, improvements can be made to the visu-
alizations presented in this paper. First, the vertical line
that appears at the prime meridian (0º longitude) could be
removed. This gap in clusters was present even in early
visualizations with unmodified data from the dataset. This
could be fixed by determining why the data is not available,
or interpolate data along the prime meridian to fill in the
missing data. Second, the data point averaging algorithm
that compresses the dataset could be improved to be more
precise when considering masked values in the average
calculations. This would result in clusters being plotted
closer to land leaving a smaller gap between the edge of
clusters and land.

There is a lot of future work related to the topics dis-
cussed in this paper that can be done. With the speed of the
proposed algorithm combined with our visualization tech-
niques, the visualizations could be expanded to be performed
interactively in real-time. This would allow researchers to
easily choose between the variable and number of clusters
they want to visualize. Another area to expand on is the type
of information that is visualized. The relationships between
two or more dataset variables could be visualized by creating
a function that takes multiple variables and computes a
one-dimensional result to be visualized. This could help
discover relationships between different components of the
global environment such as the relationship between water
temperature, air pressure, and air temperature. Another area
for future work is parallelization. Because the proposed
algorithm has the property that each cluster border will never
cross each other it is possible to parallelize its execution by
dividing the work into discrete chunks for separate processes
to compute without any dependencies.

References

[1] K. A. Abdul Nazeer and M. P. Sebastian, ”Improving the Accuracy
and Efficiency of the k-means Clustering Algorithm” in Proceedings

of the World Congress on Engineering, WCE 2009, London, U.K.,
July 1 - 3, 2009

[2] A. Likas and N Vlassis and J. Verbeek, ”The global k-means clus-
tering algorithm”, Pattern Recognition, vol. 36, no. 2, pp. 451-461,
Feb. 2003

[3] A. M. Fahim et al., ”An efficient enhanced k-means clustering al-
gorithm”, Journal of Zhejiang University-SCIENCE A, vol. 7, pp.
1626-1633, Oct. 2006

[4] C. Xie et al., ”A survey on visual analysis of ocean data”, Visual
Informatics, vol. 3, no. 3, pp. 113-128, Sept. 2019

[5] S. Chattopadhyay, A. K. Das and K. Ghosh, ”Finding patterns in the
degree distribution of real-world complex networks: going beyond
power law”, Pattern Analysis and Applications, vol. 23, pp. 913-932,
Apr. 2019

[6] I. Parberry, ”The Pairwise Sorting Network”, Parallel Processing
Letters, vol. 02, no. 02n03, pp. 205-211, Mar. 1992

[7] D. Arthur et al., ”Smoothed Analysis of the k-Means Method”,
Journal of the ACM, vol. 58, no. 5, pp. 1-31, Oct. 2011

[8] K. J. Feeley and J. T. Stroud, ”Where on Earth are the ”tropics”?”,
Frontiers of Biogeography, vol. 10, no. 1-2, Jul. 2018

[9] A. Kumar and Y. Sabharwal and S. Sen, ”A simple linear time (1 + ε)-
approximation algorithm for k-means clustering in any dimensions,”
45th Annual IEEE Symposium on Foundations of Computer Science,
Rome, Italy, 2004, pp. 454-462, doi: 10.1109/FOCS.2004.7.

[10] S. Fortune, ”A sweepline algorithm for Voronoi diagrams”, Algorith-
mica, vol. 2, pp. 153-174, Nov. 1987

